
Computer Graphics

2 - Introduction to NumPy / OpenGL

Yoonsang Lee

Spring 2022

Summary of Course Intro

• Questions

– https://www.slido.com/ - Join #cg-ys

• Quiz & Attendance

– https://www.slido.com/ - Join #cg-ys - Polls

– You must submit all quiz answers in the correct format to be
checked for “attendance”.

• Language

– I’ll “paraphrase” the explanation in Korean for most slides.

• You MUST read 1-CourseIntro.pdf CAREFULLY.

https://www.slido.com/
https://www.slido.com/

Topics Covered

• Introduction to NumPy

– What is NumPy?

– How to use NumPy

– Handling vectors & matrices using NumPy

• Introduction to OpenGL

– What is OpenGL?

– OpenGL basics

– GLFW input handling

– Legacy OpenGL & Modern OpenGL

– OpenGL as a Learning Tool

Python Version for This Course

• Python 3.7 or later

– https://www.python.org/downloads/

• Note that all submissions for assignments should

work in Python 3.7.

• You can use any OS that runs Python.

https://www.python.org/downloads/

Introduction to NumPy

What is NumPy?

• NumPy is a Python module for scientific

computing.

– Written in C

– Fast vector & matrix operations

• NumPy is de-facto standard for numerical

computing in Python.

• Very useful for computer graphics applications,

which are made of vectors & matrices.

NumPy usage

• You’ve already installed NumPy in the last lab session.

– If you haven’t, see 1-Lab-EnvSetting.pdf slides and install it.

• Now, let's launch python3 interpreter in the interactive

mode and import numpy like this:

• The following NumPy slides come from:

– https://github.com/enthought/Numpy-Tutorial-SciPyConf-

2017/blob/master/slides.pdf

>>> import numpy as np
: use ‘np’ as the local name for the
module numpy

https://github.com/enthought/Numpy-Tutorial-SciPyConf-2017/blob/master/slides.pdf

>>> 0.1 * a
array([0.1, 0.2, 0.3, 0.4])

>>> a *= 2
>>> a
array([2, 4, 6, 8])

>>> x = 0.1*a
>>> x
array([0.2, 0.4, 0.6, 0.8])
>>> y = np.sin(x)
>>> y
array([0.19866933, 0.38941834,
0.56464247, 0.71735609])

Numpy array: All elements have
the same type and the size.

Python list: Elements can have
various sizes and types.

a = np.array([[i+10*j for i in range(6)] for j in range(6)])

n × n square matrix with ones on
the main diagonal and zeros
elsewhere.

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2020123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Vector & Matrix with NumPy

• Vectors can be represented as 1D numpy arrays:

• Matrices can be represented as 2D numpy arrays:

>>> v = np.arange(3)
>>> v
array([0, 1, 2])

>>> M = np.arange(9).reshape(3,3)
>>> M
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

Nearly identical to Python’s range()

Matrix & Vector Multiplication

• * is an element-wise multiplication operator.

• Not so much used in computer graphics.

>>> v * v
array([0, 1, 4])
>>> M * M
array([[0, 1, 4],

[9, 16, 25],
[36, 49, 64]])

Matrix & Vector Multiplication

• Matrix multiplication requires "dot product" (inner

product in Euclidian space)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix & Vector Multiplication

• @ is a matrix multiplication operator.

• Very often used in computer graphics!

>>> v @ v
5
>>> M @ M
array([[15, 18, 21],

[42, 54, 66],
[69, 90, 111]])

>>> M @ v
array([5, 14, 23])

or you can use np.dot()
>>> np.dot(M, v)
array([5, 14, 23])

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2020123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Introduction to OpenGL

What is OpenGL?

• Open Graphics Library

• OpenGL is an API (Application Programming

Interface) for graphics programming.

– Unlike its name, OpenGL is not a library.

What is OpenGL?

• API is a specification.

– API describes interfaces and expected behavior.

• As for OpenGL API,

– OS vendors provide OpenGL interface (e.g. opengl32.dll

on Windows)

– GPU vendors provide OpenGL implementation, the

graphics card driver (e.g. Nvidia drivers)

Characteristics of OpenGL

• Cross platform

– You can use OpenGL on Windows, OS X, Linux, iOS,

Android, ...

• Language independent

– OpenGL has many language bindings (C, Python, Java,

Javascript, ...)

– We'll use its Python binding in this class - PyOpenGL

So, what can we do with OpenGL?

• Just only drawing things

– Provides small, but powerful set of low-level drawing

operations

– No functions for creating windows, handling events, and

creating OpenGL contexts (we'll see the "context" later)

• So, we need additional utility libraries to use OpenGL

– GLFW, FreeGLUT : Simple utility libraries for OpenGL

– Fltk, wxWigets, Qt, Gtk : General purpose GUI framework

Utility Libraries for Learning OpenGL

• General GUI frameworks(e.g. Qt) are powerful, but too
heavy for just learning OpenGL.

• GLUT “was” most popular for this purpose.

– But it’s outdated and unmaintained.

– Its open-source clone FreeGLUT is mostly concerned with
providing a stable clone of GLUT.

• Now, GLFW is getting more popular.

– Provides much fine control for managing windows and
events.

– So GLFW is our choice for this class.

[Practice]

First

OpenGL

Program

import glfw

from OpenGL.GL import *

def render():

pass

def main():

Initialize the library

if not glfw.init():

return

Create a windowed mode window and its OpenGL context

window = glfw.create_window(640,480,"Hello World", None,None)

if not window:

glfw.terminate()

return

Make the window's context current

glfw.make_context_current(window)

Loop until the user closes the window

while not glfw.window_should_close(window):

Poll events

glfw.poll_events()

Render here, e.g. using pyOpenGL

render()

Swap front and back buffers

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

If the python interpreter is
running this source file as
the main program, it sets the
special __name__ variable to
have a value "__main__".

If this file is being imported
from another module,
__name__ will be set to the
module's name.

import X
: access X’s attribute or method using
X.attribute, X.method()

from X import *
: access X’s attribute or method just
using attribute, method()

[Practice] Draw a Triangle

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_TRIANGLES)

glVertex2f(0.0, 1.0)

glVertex2f(-1.0,-1.0)

glVertex2f(1.0,-1.0)

glEnd()

Vertex

• In OpenGL, geometry is specified by vertices.

• To draw something, vertices have to be listed

between glBegin(primitive_type) and glEnd() calls.

• glVertex*() specifies the coordinate values of a

vertex.

glBegin(GL_TRIANGLES)

glVertex2f(0.0, 1.0)

glVertex2f(-1.0,-1.0)

glVertex2f(1.0,-1.0)

glEnd()

• Called “Normalized Device

Coordinate” (NDC).

• We’ll see how objects are

transformed to NDC in later

classes.

Coordinate System

• You can draw the triangle anywhere in a 2D square

ranging from (-1, -1) to (1, 1).

1

-1

-1 1

x

y

[Practice] Resize the Triangle

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_TRIANGLES)

glVertex2f(0.0, 0.5)

glVertex2f(-0.5,-0.5)

glVertex2f(0.5,-0.5)

glEnd()

Primitive Types

• Primitive types in glBegin(primitive_type) :

• They represents how vertices are to be connected.

[Practice] Change the Primitive Type

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_POINTS)

glBegin(GL_LINES)

glBegin(GL_LINE_STRIP)

glBegin(GL_LINE_LOOP)

...

glVertex2f(0.0, 0.5)

glVertex2f(-0.5,-0.5)

glVertex2f(0.5,-0.5)

glEnd()

Vertex Attributes

• In OpenGL, a vertex has these attributes:

– Vertex coordinate : specified by glVertex*()

– Vertex color : specified by glColor*()

– Normal vector : specified by glNormal*()

– Texture coordinate : specified by glTexCoord*()

• We’ll see normal vector and texture coord.

attributes in later classes.

• Now, let’s have a look at the vertex color.

[Practice] Colored Triangle

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_TRIANGLES)

glColor3f(1.0, 0.0, 0.0)

glVertex2f(0.0, 1.0)

glColor3f(0.0, 1.0, 0.0)

glVertex2f(-1.0,-1.0)

glColor3f(0.0, 0.0, 1.0)

glVertex2f(1.0,-1.0)

glEnd()

Color

• OpenGL uses the RGB color model.

• Colors in interior are interpolated.

Then, how to draw a just “red” triangle?

• Set red color for each vertex?

• You can do it just by:

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_TRIANGLES)

glColor3f(1.0, 0.0, 0.0)

glVertex2f(0.0, 1.0)

glVertex2f(-1.0,-1.0)

glVertex2f(1.0,-1.0)

glEnd()

OpenGL is a State Machine

• If you set a value for a state (or mode), it remains in

effect until you change it.

– E.g. “current” color

– Others states:

• “current” viewing and projection transformations

• “current” polygon drawing modes

• “current” positions and characteristics of lights

• “current” material properties of the objects

• ...

• OpenGL context stores all of the state associated with

this instance of OpenGL.

OpenGL Functions

glVertex3fv(v)

Number of

components

2 - (x,y)

3 - (x,y,z)

4 - (x,y,z,w)

Data Type

b - byte

ub - unsigned byte

s - short

us - unsigned short

i - int

ui - unsigned int

f - float

d - double

Vector

omit “v” for

scalar form

glVertex2f(x, y)

sglab.kaist.ac.kr/~sungeui/CG/Slides/CS380_Lab_1.pptx

[Practice] Using other forms of OpenGL

Functions

import numpy as np

def render():

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

glBegin(GL_TRIANGLES)

glColor3ub(255, 0, 0)

glVertex2fv((0.0, 1.0))

glVertex2fv([-1.0,-1.0])

glVertex2fv(np.array([1.0,-1.0]))

glEnd()

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2020123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

GLFW Input Handling

• glfw.poll_events()

– Processes events that have already been received and then
returns immediately.

– Calls a user-registered callback function for each type of
events.

Event type Set a callback using...

Key input glfw.set_key_callback()

Mouse cursor

position

glfw.set_cursor_pos_callback()

or just poll the position using
glfw.get_cursor_pos()

Mouse button glfw.set_mouse_button_callback()

Mouse scroll glfw.set_scroll_callback()

import glfw

from OpenGL.GL import *

def render():

pass

def key_callback(window, key, scancode, action, mods):

if key==glfw.KEY_A:

if action==glfw.PRESS:

print('press a')

elif action==glfw.RELEASE:

print('release a')

elif action==glfw.REPEAT:

print('repeat a')

elif key==glfw.KEY_SPACE and action==glfw.PRESS:

print ('press space: (%d, %d)'%glfw.get_cursor_pos(window))

def cursor_callback(window, xpos, ypos):

print('mouse cursor moving: (%d, %d)'%(xpos, ypos))

def button_callback(window, button, action, mod):

if button==glfw.MOUSE_BUTTON_LEFT:

if action==glfw.PRESS:

print('press left btn: (%d, %d)'%glfw.get_cursor_pos(window))

elif action==glfw.RELEASE:

print('release left btn: (%d, %d)'%glfw.get_cursor_pos(window))

def scroll_callback(window, xoffset, yoffset):

print('mouse wheel scroll: %d, %d'%(xoffset, yoffset))

def main():

Initialize the library

if not glfw.init():

return

Create a windowed mode window and its OpenGL context

window = glfw.create_window(640, 480, "Hello World", None, None)

if not window:

glfw.terminate()

return

glfw.set_key_callback(window, key_callback)

glfw.set_cursor_pos_callback(window, cursor_callback)

glfw.set_mouse_button_callback(window, button_callback)

glfw.set_scroll_callback(window, scroll_callback)

Make the window's context current

glfw.make_context_current(window)

Loop until the user closes the window

while not glfw.window_should_close(window):

Poll for and process events

glfw.poll_events()

Render here, e.g. using pyOpenGL

render()

Swap front and back buffers

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

Documentation for glfw

• http://www.glfw.org/documentation.html

• Note there are changes in the python binding:

– function names use the pythonic words_with_underscores

notation instead of camelCase

– GLFW_ and glfw prefixes have been removed, as their

function is replaced by the module namespace

– functions like glfwGetMonitors return a list instead of a

pointer and an object count

– see https://pypi.python.org/pypi/glfw for more information

http://www.glfw.org/documentation.html
https://pypi.python.org/pypi/glfw

Legacy OpenGL & Modern OpenGL

• Legacy OpenGL (OpenGL 1.x)

– Invented when “fixed-function” hardware was standard

– No shaders

– Easier to learn & good for rapid prototyping

– Deprecated since OpenGL 3.0

• Modern OpenGL (OpenGL 2.x~)

– Now programmable hardware is the common industry

practice

– Use of programmable shaders

– More difficult to program but far more flexible & powerful

OpenGL as a Learning Tool

• My focus is on fundamental computer graphics ideas, not on
concrete implementation.

• So I choose the legacy OpenGL as a basic learning tool, thanks to
its simplicity.

• Note that legacy OpenGL is just one implementation example
of fundamental computer graphics ideas we’ll learn.

• Other implementations:

– Graphics libraries: Modern OpenGL, DirectX, Vulkan, Nvidia Optix, ...

– Game engines: Unreal, Unity, ...

– Authoring tools: Maya, Blender, ...

Next Time

• Lab for this lecture (next Monday):

– Lab1 - Environment Setting,

– Lab2 - Gitlab,

– LabAssignment2

• Next lecture (next Wednesday):

– 3 - Transformation 1

